web of curves - ترجمة إلى الروسية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

web of curves - ترجمة إلى الروسية

PLANE CURVE DEFINED BY AN IMPLICIT EQUATION
Visualization of implicit curves
  • Smooth approximation of a convex polygon
  • Smooth approximation of 1)one half of a circle, 2) an intersection of two circles
  • 
''Example:'' An illustration of the raster algorithm applied to the implicit curve <math>F(x,y)=(3x^2-y^2)^2y^2-(x^2+y^2)^4=0 </math>. The curve (red) is what the algorithm is trying to draw. The raster points (black) are used as starting points to find the closest points on the curve (red circles). The spacing between each raster point is exaggerated to show the individual curve points; to more accurately trace the curve, more raster points would be used.<ref>G. Taubin: ''Distance Approximations for Rastering Implicit Curves.'' ACM Transactions on Graphics, Vol. 13, No. 1, 1994.</ref>
  • Equipotential curves of two point charges at the blue points
  • to the tracing algorithm: starting points are green
  • Intersection curve between a sphere and a cylinder
  • Blending curve (red) of two circles

web of curves      

математика

сеть кривых

web-based         
APPLICATION THAT USES A WEB BROWSER AS A CLIENT
Browser-based; Browser-based software; Weblication; Web applications; Weblications; Web Application; Web user interface; WebApp; Web-application; Web-based; Open source web application; Web app; Web-app; Web-based application; Webapp; Browser based software; Web application development; Testing Web Sites; Web based; Web Applications 1.0; Online application; Browser application; Web development software; Web Applications; Web-Based Applications; Web Apps; Web App; Web apps; Web based application; Webware; Hybrid app; Web Application Developer; Web UI; History of web application development; Web-based user interface

общая лексика

использующий Интернет-технологии, базирующийся на Интернет-технологиях

web-based application

spiderweb         
  • A classic circular form spider's web
  • The first web spun by the spider Arabella in orbit
  • Argiope]] sp.'' sitting on [[web decoration]]s at the center of the web
  • Garden Orbweaver with beetle prey caught in its web
  • A soldier ant finds itself entangled in the web of a garden spider.
  • ''Larinioides cornutus'' builds its web.
  • spinneret]] [[glands]] located at the tip of the [[abdomen]].
  • Infographic illustrating the process of constructing an orb web
  • Clearly visible spider silk production
  • Spider web covered in [[hoar frost]]
  • Karijini]], Western Australia
  • The communal spider web at [[Lake Tawakoni State Park]]
  • After severe, extensive flooding in [[Sindh]], Pakistan, many trees were covered with spider webs.
STRUCTURE CREATED BY A SPIDER, GENERALLY MEANT TO CATCH ITS PREY
Spider web pictures; CobWeb; Spider's Web; Spider's web; Spider webs in space; Spider Webs; Cobwebs; Arabella The Spider; Orb web; Spiderwebs; Spider Web; Skylab spider experiment; Cobweb; 🕸; Spiders' webs; Spiderweb; Cob web; Spider webs

общая лексика

паутина

تعريف

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

ويكيبيديا

Implicit curve

In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} . In general, every implicit curve is defined by an equation of the form

F ( x , y ) = 0 {\displaystyle F(x,y)=0}

for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.

If F ( x , y ) {\displaystyle F(x,y)} is a polynomial in two variables, the corresponding curve is called an algebraic curve, and specific methods are available for studying it.

Plane curves can be represented in Cartesian coordinates (x, y coordinates) by any of three methods, one of which is the implicit equation given above. The graph of a function is usually described by an equation y = f ( x ) {\displaystyle y=f(x)} in which the functional form is explicitly stated; this is called an explicit representation. The third essential description of a curve is the parametric one, where the x- and y-coordinates of curve points are represented by two functions x(t), y(t) both of whose functional forms are explicitly stated, and which are dependent on a common parameter t . {\displaystyle t.}

Examples of implicit curves include:

  1. a line: x + 2 y 3 = 0 , {\displaystyle x+2y-3=0,}
  2. a circle: x 2 + y 2 4 = 0 , {\displaystyle x^{2}+y^{2}-4=0,}
  3. the semicubical parabola: x 3 y 2 = 0 , {\displaystyle x^{3}-y^{2}=0,}
  4. Cassini ovals ( x 2 + y 2 ) 2 2 c 2 ( x 2 y 2 ) ( a 4 c 4 ) = 0 {\displaystyle (x^{2}+y^{2})^{2}-2c^{2}(x^{2}-y^{2})-(a^{4}-c^{4})=0} (see diagram),
  5. sin ( x + y ) cos ( x y ) + 1 = 0 {\displaystyle \sin(x+y)-\cos(xy)+1=0} (see diagram).

The first four examples are algebraic curves, but the last one is not algebraic. The first three examples possess simple parametric representations, which is not true for the fourth and fifth examples. The fifth example shows the possibly complicated geometric structure of an implicit curve.

The implicit function theorem describes conditions under which an equation F ( x , y ) = 0 {\displaystyle F(x,y)=0} can be solved implicitly for x and/or y – that is, under which one can validly write x = g ( y ) {\displaystyle x=g(y)} or y = f ( x ) {\displaystyle y=f(x)} . This theorem is the key for the computation of essential geometric features of the curve: tangents, normals, and curvature. In practice implicit curves have an essential drawback: their visualization is difficult. But there are computer programs enabling one to display an implicit curve. Special properties of implicit curves make them essential tools in geometry and computer graphics.

An implicit curve with an equation F ( x , y ) = 0 {\displaystyle F(x,y)=0} can be considered as the level curve of level 0 of the surface z = F ( x , y ) {\displaystyle z=F(x,y)} (see third diagram).

What is the الروسية for web of curves? Translation of &#39web of curves&#39 to الروسية